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Self-Compensation for the Axial Velocity Spread
in a Wiggler Field

D.E. Gordon*, B. Hafizi’, C.W. Roberson** and P. Sprangle*

*Naval Research Laboratory, Washington, D.C. 20375, USA
Ylcarus Research, Inc., PO. Box 30780, Bethesda, Maryland 20824-0780, USA
** Physical Sciences Division, Office of Naval Research, Arlington, VA 22217, USA

Abstract. In order to obtain optimal performance from a free electron laser (FEL), the axial velocity
spread on the electron beamn must be small as it propagates through the wiggler ficld. Treated
separately, both the wiggler-induced betatron motions and the self-induced space charge forces tend
to increase the axial velocity spread and degrade the performance of the FEL. However, it has been
shown analytically [B. Hafizi and C.W. Roberson, Phys. Plasmas 3, 2156 (1996)] that when both
effects are treated self-consistently an equilibrium exists wherein the space charge forces exactly
compensate for the betatron motion. This leads to the surprising result that for a continuous beam,
increasing the beam current can improve the beam quality.

INTRODUCTION

The quality of the electron beam used in a free electron laser (FEL) can be quantified in
terms of the scaled thermal velocity, S, given by [1]
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where vy, is the average velocity of the beam, v;;, , is the root-mean-square (rms) spread
in the axial velocity, and v, is the phase velocity of the fastest growing ponderomotive
wave. When the axial velocity spread is large enough so that S >> 1, the FEL operates
in a kinetic regime where the cold beam approximation is invalid. This generally results
in a drastic reduction in the efficiency of the FEL since only a fraction of the electrons
contribute to the growth of the radiation.

The axial velocity spread on the beam is initially determined by the beam emittance
and energy spread. As the beam propagates, both the wiggler fields and the beam's
own self-fields cause the axial velocity spread to evolve. When the beam current is low,
the self-fields can be neglected, and the axial velocity spread only evolves because of
the betatron osciliations caused by the wiggler field. This leads to an axial velocity
spread in the form of a shear V ;v,. Here, v, is the axial velocity of the electron fluid
and V| is the transverse gradient. When the self-fields are included, they oppose the
betatron oscillations and reduce the shear. Indeed, in the case of a continuous beam,
an equilibrium can be found such that forces due to the self-fields exactly cancel the
forces due to the focusing fields of the wiggler [1]. In this paper, we perform numerical
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calculations illustrating this equilibrium. The case of a pulsed beam will be considered
in a future paper.

NUMERICAL MODEL

We study the electron beam flow in a FEL by numerically following the orbits of a large
number of particles under the influence of a prescribed wiggler field and a dynamically
computed self-field.

The particles are initially loaded into a Gaussian weighted hyper-ellipsoid in six
dimensional phase space. They are advanced in time using the standard Boris pusher
[2].

The self field model is derived from a method used in the Los Alamos code Trace3D.
First, an ellipsoid is fitted to the particle positions via

1
0(21 =N Z(ai - Ca)z
i
where N is the number of particles, i is the particle index, o is one of the three spatial

coordinates, and Cy are the coordinates of the beam centroid. The force exerted on a
particle by the self fields is then approximated by
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where €9 is the permittivity of free space, g is the charge of the particle, Q is the total
charge in the beam, 7 is the relativistic factor of the beam, and f is the “space charge
form factor” which was tabulated by Lapostolle using data obtained numerically. In this
paper, G, — oo which leads to f — 0. The factor of 573/2 converts the dimensions of
the Gaussian weighted ellipsoid into the dimensions of the equivalent uniform weighted
ellipsoid.

The wiggler field is modeled according to the formula given in Ref. [3] for parabolic
pole pieces:
B = B [sinh(Z"/zkwx) sinh(2™2kyy) cos (ku2)k
+cosh(271/2k,,x) cosh(271/2k,,y) cos(kw2)§
—2-1/2 cosh(27 1 2kyx) sinh (2~ 2kyy) sin(sz)i]
Here, k,, is the wiggler wavenumber and %, ¥,% are the unit vectors. The electron beam

propagates in the z-direction, with the wiggle motion in the x-z plane. The parabolic pole
pieces provide equal focusing in both transverse directions.
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FIGURE 1. Variation of spot size with propagation distance for a beam with and without space charge.
Solid circles represent data from a calculation with J = 0, open squares represent data from a calculation
with J = 8 kA/cm?. As expected, self fields extend the betatron wavelength.

SELF COMPENSATION

In the case of a continuous beam, the effect of self fields is to modify the betatron
wavenumber according to [1]

ky = kgo (1 — SFP)!/2 4)

2
k,/k
SFP = (——’ﬂlﬂﬁ)
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Here, kf, = 4nne2/nzc2, n is the electron density, e is the electronic charge,

where

kgo = a,.,,kw/\/iy()ﬁzo is the betatron wavenumber due to the wiggler field only,
a, = eB()/kwmc2 is the peak normalized vector potential of the wiggler field, B, is
the axial velocity of the beam normalized to ¢, and Y,0 = (1 — Bzzo)“'/z. Although this
formula was derived for flat pole pieces, it remains valid for parabolic pole pieces
as well. Note that if the self field parameter (SFP) is unity, the betatron wavenumber
vanishes and the beam is in equilibrium.

In the case of finite emittance, the matched beam condition becomes

&4 = YoP:0kpo?
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FIGURE 2. Axial velocity distribution for a continuous beam 10 cm into the wiggler field. The solid
line is the data for J = 0, the dashed line is the data for J = 8 kA/cm?

where €, is the normalized emittance (in units of length - radians), and G, is the radius of
a uniform density continuous beam. For a finite spot size, equilibrium occurs for kg > 0.

However, for emittances typlcal of a high quahty photo-injector [4, 5], the beam is nearly
in equilibrium for kg =

We now consider numerlcal calculations of the electron orbits in a wiggler field with
By =3 kG and A, =21 /ky, = 5 cm. The beam had initial dimensions of 6, = 6, = 1 mm,
and initial emittance of zero. Fig. 1 shows measurements of ©,, at several z positions. The
solid circles correspond to the case where the current density, J, vanishes. In this case
the beam undergoes betatron osc1llat10ns at the expected frequency. The open squares
correspond the case where J = 8 kA/cm? which gives SFP = 0.8. In this case the spot size
is nearly constant. According to Eq. (4), the best equilibrium should occur for SFP = 1
. In the numerical calculation, however, SFP = 1 led to a larger deviation in spot size
than SFP = 0.8. The discrepancy may be related to the conversion between Gaussian
and uniform beams.

Fig. 2 illustrates the effect of space charge on the axial velocity distribution. The solid
curve corresponds to the case where J = 0 while the dashed curve corresponds to the
case where J = 8 kA/cm?. The distribution is significantly narrower in the case of the
high current beam. This is a result of the fact that in the presence of strong self-fields
forward momentum is not lost to betatron motions.
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CONCLUSIONS

Numerical calculations support the assertion that self-fields can improve the quality of
an electron beam for FEL applications. By opposing the focusing forces of the wiggler
field, self-fields can increase the betatron wavelength and reduce the spread in axial
velocity. This reduces S and improves the performance of the FEL.
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